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SUMMARY 
 
The importance of the flow and transport processes 
through fractured porous media has influenced 
development of different numerical models to predict 
the outcome of these phenomena. This paper compares 
three different models for modelling of flow and solute 
transport in fractured porous media, in terms of their 
predictions of the flow and solute transport field 
variables: the equivalent continuum (EC) model, the 
dual porosity (DP) model and the discrete fracture/non-
homogeneous (NH) model. Though it is clear that the 
three models are based on different assumptions for 
their validity, it is not clear in which cases two or all of 
them would give similar results, since there are no such 
reported comparisons in the open literature. The 
Boundary Element Dual Reciprocity Method – Multi 
Domain scheme (BE DRM-MD) has been used and its 
implementation has been described. This numerical 
scheme has been used for the first time to solve a dual-
porosity model. The scheme showed satisfactory 
accuracy and high flexibility in preparation of the 
discrete fracture/non-homogeneous meshes. 
 
Key words: fractured porous media; equivalent 
continuum model; dual porosity model; discrete fracture 
model; model comparison; boundary elements 

 
1. INTRODUCTION 
 
With the increased demand of water all over the world, 
the quality problem becomes the limiting factor in the 
development and use of water resources. Although it 
may seem that groundwater is more protected than 
surface water, it is still subjected to pollution, and when 
the latter occurs, the restoration to the original, 
unpolluted state, is usually more difficult and time-
consuming process. Therefore, the interest in the 

mathematical and numerical treatment of fluid flow and 
transport in porous media, i.e. the necessity for 
sophisticated mathematical models and numerical tools 
capable of understanding, predicting and optimising all 
the physical phenomena occurring in this field, has been 
increasingly rising.  
 
Understanding flow and transport processes in naturally 
fractured porous media is of interest in environmental 
engineering applications, in geohydrology or in oil 
reservoirs engineering, when porous strata are made of 
rocks, which are crossed by networks of fissures and 
cracks. Recently, fractured rocks attracted the attention 
in connection with the problem of geological isolation 
of radioactive waste.   

 
2. MODELING FLOW AND TRANSPORT IN   

FRACTURED POROUS MEDIA 
 
Porous media often exhibit a variety of heterogeneities, 
such as fractures, fissures, cracks, and macro pores or 
inter-aggregate pores. The crystalline bedrock consists 
of solid rock, cut by a network of fractures. Water flows 
unevenly through an intricate network of paths formed 
by fracture intersections. However, water does not move 
along all of the fractures. For various reasons, no 
driving force exists in a number of fractures that are 
"dead-ends", but only in small parts, i.e. flow channels, 
of the fractures, which form the active flow paths with 
high permeability. Thus, water flows primarily along a 
small portion of inter-connected fractures (water-
bearing fractures), while most of the fractures and other 
volumes with low fracture density (matrix blocks) 
contain essentially stagnant water. The hydraulic 
characteristics of the rock are mainly defined by the 
properties of the fracture network, i.e. the permeability, 
density, size and orientation distributions of the 
fractures.   
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The microscopic structures or processes affect water 
and solute movement at the macroscopic level by 
creating non-uniform flow fields with widely different 
velocities. Therefore, when modelling groundwater 
flow, the characteristics of the porous media need to be 
considered. From a conceptual point of view, various 
models can be adopted to carry out the study of water 
flow in the far field [1]. The type of results aimed for, 
the data available, the scale of the modelled volume and 
some practical limitations like computational resources 
affect the selection of the modelling approach. 
Furthermore, the applicability of alternative methods for 
modelling various physical processes in a domain is 
different. In the groundwater flow analyses, the 
fractured porous media in the far field (Fig.1a) can be 
modelled conceptually with three alternative 
approaches: the discrete fracture models (non-
homogeneous NH), (Fig.1b), the double-porosity (DP) 
models (Fig. 1c) and the equivalent-continuum (EC) 
models (Fig. 1d). 
 

matrix block

fracture zone

matrix block

fracture zone

fracture

a) b)    

averaged hydraulic 
properties

matrix block

fracture

c) d)  
Fig. 1 a) fractured porous media; b) non-homogeneous 

representation; c) double porosity representation; 
d)equivalent continuum representation 

 
2.1 The non-homogeneous (discrete fracture) model  
 
The porosity and permeability for the non-homogeneous 
model are allowed to vary discontinuously and rapidly, 
as both quantities are significantly greater in the 
fractures than in the porous rock. Computational and 
data requirements for treating such a model are too 

large, which makes this approach not suitable for 
practical purposes. Therefore, it is suitable for those 
situations where only several fractures or fracture zones 
are of significance. For systems with large number of 
fractures the NH model becomes impractical because of 
the large CPU and data storage demands, see [4]. 
 
The equation that describes the transient case of 
saturated flow in isotropic porous media can be written 
as: 

hKS
t
h

C ource
2∇⋅=+

∂
∂⋅                 (1) 

where C - specific storativity [L-1], h- the hydraulic head 
[L], K - the hydraulic conductivity [LT-1], t - time [T] 
and Source - the source term [T-1]. 
 
Equation (1) is valid for both, porous matrix and 
fractures. The matrix–fracture interface is treated in the 
same way as in any other case of non-homogeneous 
medium. The flow velocity field is described by the 
Darcy law: 

hKV ∇−=
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The following equation for transient solute transport is 
used: 
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where c – solute concentration [ML-3]; R – retardation 
factor; Ω – coefficient related to a first-order chemical 
reaction [T-1]; vi –velocity in the x and y direction [LT-1]; 
Dij – dispersion coefficient [L2/T]. 
 
The first term on the right – hand side of the equation 
(3) describes the influence of the dispersion on the 
concentration distribution; the second term is the change 
of the concentration due to advective transport, while 
the third one represents concentration changes due to 
decay and chemical reactions. 
 
2.2 Equivalent-continuum model  
 
In the equivalent-continuum (EC) approach, the same 
equations as for the NH model, (1) and (2) for flow and 
(3) for solute transport, are used. The difference from 
the NH model is that the fractures are not modelled 
explicitly, the fractured bedrock is treated as a 
continuum. No distinction is made between the water-
bearing fractures and the matrix blocks, water is 
assumed to flow through the whole system. The 
hydraulic properties of the domain are averaged over the 
sub-volume, or representative elementary volume 
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(REV), containing sufficiently large number of 
fractures, each hydraulic unit separately is treated as a 
homogeneous and isotropic continuum. They are 
estimated according to the equations for the simplest 
case of flow through domain intersected by a family of 
parallel fractures of equal aperture: 
- for porosity 
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where nf and nm - porosities of the fractures and matrix 
blocks in the REV, respectively, Vf and Vm - volumes of 
the fractures and matrix blocks in the REV [L3], 
respectively, Vt - total volume of the domain [L3], L - 
total thickness of the domain [L], b - aperture of the 
fracture [L], m - number of parallel fractures, ρ − fluid’s 
density [mL-3], µ - dynamic viscosity [mL-1T-1], and Kf 
and Km - hydraulic conductivities of the fractures and 
matrix blocks, respectively [LT-1]. 
 
The equivalent dispersion coefficient is calculated 
according to the following expression 

t
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t
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D
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DD +=                                    (6) 

where Df, Dm are dispersion coefficients in the fractures 
and matrix blocks [L2/t], respectively. The calculation 
of the equivalent dispersion coefficient is obtained 
under assumption of parallel fractures and flow parallel 
to the fractures, and steady state condition when there is 
no more lateral diffusion into the matrix. Under such 
conditions the transport is also parallel to the fractures 
and the 2D problem is reduced to a 1D problem, both in 
the fractures and porous matrix, and the following 
equation is used for the respective dispersion 
coefficients: 

( ) ( ) ( ) ( )x i L i x i d iD a V D= +                              (7) 

where aL - longitudinal dispersivity, Dd - the coefficient 
of molecular diffusion, and (i) stands for m, matrix 
block, or f, fracture.  
 
Although the EC model is commonly employed in 
describing fractured bedrock, there are some problems 
associated with it. The results obtained with the EC 
model represent averaged values over sufficiently large 

volumes of the domain, and therefore it is impossible to 
have a reliable estimate of the hydraulic head or 
concentration in a certain point of the domain. 
 
2.3 Dual porosity model  
 
As an alternative, discontinuous nature of the porosity 
and permeability can be avoided by replacing them 
locally by their average values, and the interchange 
between the fracture and the matrix must be modelled. 
In such a model, the void space of the fractures is 
visualized as a continuum (occupied by one or more 
fluids), while the void space within the blocks is 
regarded as another continuum that is occupied by the 
same fluid, or fluids, see [6], [7], [8]. The two void-
space continua may exchange fluid’s (or fluids’) mass 
between them at every macroscopic point within the 
considered domain. The transport of other extensive 
quantities, e.g. mass of the solute, may also take place 
within each of the two continua, with a possible 
exchange between them.  
 
Double porosity (DP) model is much more complicated 
mainly from the fact that since the fracture system is 
viewed as a porous medium, both matrix and fracture 
flow and transport are defined at each point of the 
matrix. The numerical double-porosity model assumes 
that the equation for transient water flow and the 
convection-dispersion equation for solute transport can 
be applied to both pore systems. Hence, 
macroscopically, two flow velocities, two pressure 
heads, two water contents and two solute concentrations 
characterize the porous medium at any point in time and 
space. The model assumes that the properties of the bulk 
porous medium can be characterized by two sets of 
local-scale properties: one set associated with the 
fracture pore system (subscript f) and the other with the 
matrix pore system (subscript m). 
 
Assuming applicability of Darcy’s law, saturated water 
flow in the fracture and matrix pore regions are 
described by a coupled pair of equations  [7],[8]: 
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where: h – pressure head [L]; C – specific water 
capacity dθ/dh [L-1]; K – hydraulic conductivity [LT-1]; t 
– time [T]; wf – relative volumetric proportion of the 
fracture pore system; wm = 1- wf ; 
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( )mfww hh −= αΓ  – water transfer term [T-1]           (9) 

)u(K
a

K awa
*

ww γβαα 2=⋅=  – first-order mass 

transfer coefficient  for flow [L-1T-1]              (10) 

a - distance (L) from the centre of the fictitious matrix 
block to the fracture boundary (half width of the matrix 
block); β – dimensionless factor depending on the 
geometry of the aggregates, β =3 (for rectangular slabs) 
– 15 (for spheres); γw = 0.4 (more or less independent of 
the aggregate geometry and the applied initial pressure 
and conditions); Ka – effective hydraulic conductivity of 
the matrix at the fracture/matrix interface. 
 
In the similar manner as for the flow, the solute 
transport in a saturated fractured porous medium is 
described using two coupled double-porosity advection-
dispersion equations, here directly written as non-
homogeneous Laplace equations for the sake of brief 
presentation: 
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3. NUMERICAL IMPLEMENTATION 
 
In spite of the large number of existing numerical 
packages for simulation of the fluid flow and 
contaminants transport in fractured porous media, most 
of them are based on the Finite Element (FEM) and 
Finite Difference (FDM) methods. Here, the Boundary 
Element Dual Reciprocity Method – Multi Domain 
scheme (BE DRM-MD) has been used and 
implemented. The general idea of the BEM is to 
transform the original partial differential equation 
(PDE), or set of PDEs that define a given physical 
problem, into an equivalent integral equation (or 
system) by means of the corresponding Green's theorem 
and its fundamental solution [12], [13]. In this way 
some or all of the field variables and their derivatives 
are necessary to be defined only on the boundary. The 
governing equation that describes a linear time-
dependent process of flow and transport in the models, 
in the general form can be written as,  

( )2 , , ,u b x y u t∇ = in the domain D               (12) 

with the: ‘essential’ or Dirichlet boundary conditions of 
the type uu =  on Γ1 ; ‘natural’ or Neumann boundary 
conditions qnuq =∂∂=  on Γ2; eventually, ‘mixed’ or 

Robin boundary conditions  of type c
n
u

bau =
∂
∂+  

 
 
 
 
 
 
 
 

  Fig.2. Definition of domain with boundary conditions 

 
Here Γ=Γ1+Γ2  is the exterior boundary that encloses the 
domain D and n is its outward normal, see Fig. 2. 
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The above expressions are for the fracture system, and 
similar ones are defined for the matrix blocks.  
Applying the DRM-MD approach to the equation (12), 
according the detailed explanation in references [14], 
[15], yields: 

   bFqGuHqGuH 1)( −−=− iiiii
��

                        (13) 

 
The two boundary element characteristic matrices H and 
G on both sides of the equation (13) are consisted of 
coefficients, which are calculated assuming the 
fundamental solution is applied at each node 
successively, and depending only on geometrical data, 
see [12]-[14]. 
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A code that offers high flexibility in mesh generation, 
which can be built of sub-domains of various sizes, 
geometries and numbers of boundary elements per sub-
domain, was developed.  
 
4. NUMERICAL TESTS OF THREE SCHEMES 
 
Before any case studies were analysed, verification of 
the numerical approach was performed for both, flow 
and transport equations. Once the accuracy of the basic 
BE DRM-MD scheme was verified, a number of 
transient cases for flow and solute transport were solved 
using the EC, NH and DP models.  
 
4.1 Flux calculation procedures for the models 
 
The total flow and transport fluxes through the fractured 
porous domain are compared in different examples. The 
water fluxes for different models are calculated using 
the following equations: 

�� For the EC model: b
n
h

K
∂
∂−=φ                          (14) 

�� For the NH model: 
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�� For the DP model based on volumetric factor wf: 
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    total f mbφ φ φ= +                         (17c) 

where: φf  - total flow flux in the fractures for the 
considered cross section; φmb - total flow flux in the 
matrix block for the considered cross section; φtotal - 
total flow flux for the considered cross section; wf - 
relative volumetric proportion of the fracture pore 

system; Kf , Kmb -hydraulic conductivities for the 

fractures and matrix blocks, respectively; 
n

h
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n

h mbf
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∂
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normal derivatives to the cross section in the fractures 
and matrix blocks, respectively; b - total width of the 
domain; bfi - aperture of one fracture; bmj  - width of a 
single matrix block; bf  - total aperture of fractures 

through the cross section,
�
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; k - number of fractures in the 

considered section; m - a number of matrix blocks in the 
considered section. 
 
Note that Eqs. (16) and (17) differ since Eq. (16) uses 
the volumetric factor wf, which includes fractures with 
active and stagnant flow, in calculation of the fluxes, 
while Eq. (17) uses just the aperture of the active/water-
bearing fractures, or the ones that form part of the 
considered cross section through which the flux is 
calculated. It is also important to note that in a general 
case bf and bmb will differ from wf and (1- wf)b, 
respectively. The solute fluxes are calculated in a 
similar way as the water fluxes.  
 
4.2 Example 
 
In this example, a square area of dimensions 0.46 x 0.46 
with six fracture zones intersecting under 90o angle is 
analysed, see Fig.3. Two different geometrical 
distributions of fractures were analysed. The first one 
has two arrays of fractures, one parallel to the flow and 
one perpendicular to the flow, see Fig. 3a), in this 
example referred to as the “original” fracture network, 
and the other one is “rotated” for an angle of 45o in 
respect to the original geometry/fracture network, 
Fig.3b). In both cases the analysed areas of the domains, 
the mutual distance between fractures and the 
volumetric factor of the fractures are equivalent. The 
purpose for analysing these two orientations of the 
fracture networks was to establish the sensitivity of the 
NH model, as a reference model towards which the 
other two are compared, to the orientation of the 
fracture network in respect to the direction of the flow. 
This information is important since the other two 
selected models, being isotropic, cannot take into 
account the orientation of the fracture network in 
respect to the direction of the flow.  
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a) original fracture network   b) rotated fracture network 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Square mesh with discrete fracture zones:  
a) original fracture network with two discretizations; 
b) rotated fracture network with two discretizations 

 
According to Fig. 3a), the double porosity model was 
designed with all the necessary design parameters, 
which include the half-distance between the fractures 
a = 0.06m, volumetric factor wf = 24.4%, geometry of 
the matrix blocks ββββ = 3.0, γw = 0.4, and effective 
hydraulic conductivity Ka is taken as an average value 
of both conductivities in the matrix block  
Km = 8.64×10-5m/d, and in the fractures                     
Kf = 8.64×10-3m/d. The value of the specific storativity 
used for all the models is 10-4m-1. Dispersion 
coefficients Df = 0.05m2/d and Dm = 0.005 m2/d were 
used for the transport simulation. The equivalent 
properties for the EC model were calculated using Eqs. 
(5) and (6).  

Boundary conditions prescribed for the fluid flow are:  
hf (0, y, t)= hm (0, y, t) = 1.05m at the inlet surface and 
hf (L, y, t) = hm (L, y, t) = 1.0m at the outlet surface,   
qf(x, 0, t), qm(x, 0, t) and qf(x, b, t), qm(x, b, t)  
 
The flow field is with a hydraulic gradient of 5%. 
Boundary conditions prescribed for the transport 
simulation are: cf(0, y, t) = cm(0, y, t) = 1.2 at the inlet 
surface and cf(L, y, t) = cm(L, y, t) = 1.0 at the outlet 
surface.  At y = 0 and y = b, a zero normal derivative 
boundary condition is imposed, (impermeable 
boundary). Here, L is the length of the adequate domain 
and b is its width. 
 
Initial conditions in the fracture and the matrix pore 
system are: h(x, y, 0) = 1.0m for the flow and 
c(x, y, 0) = 1.0 for the transport.  
 

Comparison of DP, NH and EC models; t=0.001 days  
Kf=10-7m/s; Km=10-9m/s; Cf=Cm=10-4m-1; ααααw=1.454 ; wf= 0.244
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Fig.4: Hydraulic head profiles for the fractures 

estimated using three models; t=0.001days 

Comparison of DP, NH and EC models; t=0.001 days  
Kf=10-7m/s; Km=10-9m/s; Cf=Cm=10-4m-1; α α α αw=1.454 ; wf= 0.244
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Fig.5: Hydraulic head profiles for the matrix blocks 

using three models; t=0.001days 
 
For the NH model for the first mesh with horizontal and 
vertical fractures, two discretizations were made: one 
using 49 sub-domains and 64 geometrical nodes and the 
second one with 145 sub-domains and 320 nodes. 
Numerical simulations for both of the fracture networks 
were virtually identical and nodal values for the 
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hydraulic heads and concentrations differ only after the 
fourth significant digit. The maximum discrepancies are 
about 0.01%.  
 
Small differences in computed hydraulic heads indicate 
clearly that the domain discretization is fine enough for 
the present example to obtain an accurate numerical 
solution using the NH model. The analyses showed that 
for heterogeneous systems like this there is no need of 
extremely fine meshes. Meshes used for the DP and EC 
models were built of 100 equal square sub-domains.  
 
Fig.4 shows the comparison of results for hydraulic 
head profiles in the fractures for t = 0.001days obtained 
using the three models. The profile fr in the NH model 
with “original” fracture network is taken in the middle 
fracture, y=0.235m, while the profile in the matrix 
blocks mb is taken at y=0.175m, see Fig. 3. The profile 
fr for fracture in the NH model with the “rotated” 
network follows the flow in the “zigzag” way of the 
fracture.  Note that the EC model has only one solution. 
The results obtained with the three models are in good 
agreement. In Fig. 5 the comparison of hydraulic heads 
in the matrix block for t = 0.001days obtained using the 
DP and NH models is shown. The agreement is better 
between the results obtained using the NH model with 
two different fracture networks, while the DP model 
shows a bit larger discrepancy. Since the flow is much 
faster in the fractures, and therefore of more 
significance, the agreement between the models for 
estimated hydraulic heads can still be considered to be 
satisfactory. Actually, as ∞→t , when the models 
reach steady state, both DP (the fractures, as well as the 
matrix blocks) and EC models have linear hydraulic 
heads, see Fig. 6, or their solutions are one-dimensional 
and equal, while the NH model has two-dimensional 
solution which is also confirmed with the existence of 
the transversal velocity vy., see Fig. 8. 

Comparison of DP, NH and EC models; t=0.02 days  
Kf=10-7m/s; Km=10-9m/s; Cf=Cm=10-4m-1; ααααw=1.454 ; w f= 0.244 
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Fig. 6a: Hydraulic head profiles for the fractures using 

three models; t=0.01days 

Although it may seem that all the lines are linear and 
overlapping one each other, still there is a difference in 
the behaviour of the three models. Namely, the EC and 
DP (both for the fractures and matrix blocks) models 
have linear one-dimensional solutions, while the NH 
model (both the “original” and the “rotated” one) have 
two-dimensional complex solutions. In purpose to make 
it obvious, the hydraulic head for the NH with “rotated” 
fracture network in two profiles (1-1 at y=0.1415m and 
2-2 at y=0.2265) is given in separate figures, see Fig. 6b 
and 6c. For the NH model with the “original” fracture 
network happens something similar, but it is not 
obvious in the Figures 6 because the zones with high 
permeability in the horizontal profiles are not as wide as 
in the NH model with the “rotated” mesh. 

Flow in NH model with rotated network t=0.02 days;
profile 1-1 y=0.1415m
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Fig. 6b: Hydraulic head profile 1-1 at y=0.1415m; NH 

model with rotated mesh; t=0.02d 

Flow in NH model with rotated network t=0.02 days;
profile 2-2 y=0.2265m
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Fig. 6c: Hydraulic head profile 2-2 at y=0.2265m;  NH 

model with rotated mesh; t=0.02d 
 
Figures 7 and 8 show the calculated flow fields in the 
fractures for both NH models with “original” and 
“rotated” fracture networks. It can be seen that the 
vertical fractures, because of the type of boundary 
conditions used for y=0 and y=0.46, in the “original” 
fracture network have little influence on the flow, while 
in the “rotated” fracture network larger proportion of the 
fractures have an active role. Note that the length of the 
velocity vectors in the figures are automatically scaled 
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and may not give an accurate representation of the 
magnitude of the velocity vectors in the two meshes. 
With the Fig. 7 and 8, the complex two-dimensional 
solution of the NH models when the time tends to 
infinity and the steady state is reached ( ∞→t ) is 
confirmed again. 

 
Fig. 7: Velocities in the fractures for NH model with 

original mesh 

 
Fig. 8: Velocities in the fractures for NH model with 

rotated mesh 

The comparison of estimated total flow fluxes on the 
inlet and outlet of the domain are shown in Figures 9 
and 10, respectively. The flux for the DP model was 
calculated in two different ways. The first estimation 

makes use of Eq. (16) and the volumetric factor wf of 
the fractures, while the second estimation uses Eq. (17) 
and the exact aperture of the fractures participating in 
the considered cross section, i.e. detailed picture of the 
fracture network is needed. In the figures DP(wf) refers 
to the approach that uses (16), and DP refers to the one 
that uses (17). It is apparent that both NH solutions 
obtained using two different meshes and the DP model 
using equation (17) show flux results that are in good 
agreement. The NH model with rotated mesh overshoots 
the other two solutions for the flux on the inlet in the 
transient period, perhaps due to the larger portion of the 
fractures that are actively involved in the flow, see Fig. 8.  
 
Note that in this example the volumetric factor differs 
from the sum of apertures of fractures participating in 
the considered cross section. In the first example it did 
not make any difference whether the volumetric factor 
wf or the exact total aperture of fractures was used to 
calculate the flux through the fracture network, since 
they were identical, because all the existing fractures 
were included in the flow. Using Eq. (16) in this case 
overestimates the total aperture of fractures effectively 
taking part in the flow through a given cross section.  

Fluxes for NH-orig, NH-rot , DP and EC models; inlet   
Kf=10-7m/s; Km=10-9m/s; Cf=Cm=10-4; ααααw=1.454; wf=0.244
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Fig.9: Total flow fluxes at inlet surface for 3 models 

Fluxes for NH-orig, NH-rot , DP and EC models; outlet   
Kf=10-7m/s; Km=10-9m/s; Cf=Cm=10-4;ααααw=1.454; wf=0.244
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Fig.10: Total flow fluxes at outlet surface for 3 models 



Todorka Samardzioska i Viktor Popov  Numeri�ko upore�ivanje modela protoka i transporta u poroznoj sredini 

VODOPRIVREDA   0350-0519,  39 (2007)   225-227   p. 3-16 11 

This shows that when calculating the fluxes with the DP 
model it is not enough to know the volumetric factors 
only, for more accurate calculation information about 
the geometry and orientation of the fracture network is 
needed. This is in contradiction with the general idea of 
the DP models which consider the domain to be 
homogeneous.  
 
The EC model encounters similar problems as the DP 
model using Eq. (16), as the equivalent hydraulic 
conductivity, calculated using Eq. (5), gives an 
overestimate due to the Vf / Vt term, which takes into 
account the vertical fractures that do not have 
significant contribution towards the flow. The accuracy 
of the flux estimated using the DP model can be 
improved using the exact aperture of the fractures in the 
cross section, but the accuracy of the flux estimated 
using the EC model adopted in this study cannot be 
improved since the Vf / Vt term is part of the model itself 
and cannot be eliminated. 
 
The results show good agreement for the NH model 
with two different meshes, Figs. 5.3a) and 5.3b), 
indicating that the orientation of the fracture networks in 
respect to the direction of the flow does not influence 
significantly the results in this case. 
 
Both fluxes for the DP model, Eqs. (16) and (17), show 
prolonged transient period, though to smaller extent 
than what was observed in Example 1. 
 
Figs. 11a and 11b show the concentration profiles for 
t=0.5 days in the fractures and matrix blocks, 
respectively. Regarding the fractures, the results show 
slightly larger discrepancies than the results for 
hydraulic heads. 
 

Transport -comparison of DP, NH and EC models; t=0.5 days  
Df=0.05m2/day; Dm=0.005m2/day; Rf=Rm=1; ααααs=22.9; wf= 0.244
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Fig. 11a: Concentration profiles for the system of 

fractures for the three models; t = 0.5 days  

Transport -comparison of DP, NH and EC models; t=0.5 days  
Df=0.05m2/day; Dm=0.005m2/day; Rf=Rm=1; ααααs=22.9; wf= 0.244

0.95

1

1.05

1.1

1.15

1.2

1.25

0 0.1 0.2 0.3 0.4

x [m]

co
nc

en
tr

at
io

n

NH orig mb

NH rot; mb

DP mb

 
Fig. 11b: Concentration profiles for the matrix blocks 

for the three models; t=0.5 days 

Transport -comparison of DP, NH and EC models; t=10 days  
Df=0.05m2/day; Dm=0.005m2/day; Rf=Rm=1; ααααs=22.9; w f= 0.244

0.95

1

1.05

1.1

1.15

1.2

1.25

0 0.1 0.2 0.3 0.4

x [m]

co
nc

en
tr

at
io

n NH orig fr

NH orig mb

DP 

EC

NH rot 1-1

 
Fig.12a: Concentration profiles for the matrix blocks for 

the three models; t=10 days 

As the time progresses, the steady state is reached. In 
Fig. 12a the comparison is given for all three models for 
time t=10days. Similarly as for the flow processes, 
transport processes of the EC and DP models show one-
dimensional solution and the NH model solution is two-
dimensional.  

Transport in NH rotated model for steady state;
profile 1-1 y=0.1415m
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Fig. 12b: Concentration profile 1-1 at y=0.1415m; NH 

model with rotated mesh; t=10 days 
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Transport in NH rotated model for steady state;
profile 2-2 y=0.2265m
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Fig. 12c: Concentration profile 2-2 at y=0.2265m; NH 

model with rotated mesh; t=10 days 

 
Concentration profiles of the NH model with “rotated” 
fractures are extracted and given separately in the Fig. 
12b and 12c in order to show the solution more 
obviously. 
 
The variations in time of the total solute fluxes for the 
three models on the inlet and on the outlet of the domain 
are shown in Figs. 13 and 14, respectively. The fluxes 
of solute mass include an advective flux, expressing the 
flux carried by the water at an average velocity, and 
dispersive flux that produces the spreading or dispersion 
of the solute. Larger discrepancies are found on the inlet 
in the early stages of the simulation t < 0.2, see Fig. 13.  

Comparison of the total fluxes of concentration in the
NH-original, NH-rotated, DP and EC models; inlet surface
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Fig. 13: Total solute fluxes for three models at the inlet 

 
On the outlet, the total solute fluxes obtained with both 
NH meshes and the DP model using real fractures’ 
apertures are in good agreement. The solute fluxes 
estimated with the EC model and the DP model using 
volumetric factor wf show larger discrepancy from the 
other three estimates, for a reason similar to the one 
producing discrepancy for the water flux. Unlike the 
previous case when the water fluxes were estimated, the 
solute steady state fluxes are not the same for the EC 

and DP model using volumetric factor, as the total flux 
has got two components, advective and dispersive, 
making these two fluxes differ more significantly. For 
each model the inlet flux is equal to the outlet flux in the 
steady state, i.e. there is no loss of the mass. 
 

Comparison of the total fluxes of concentration in the
NH-original, NH-rotated, DP and EC models; outlet surface
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Fig. 14: Total solute fluxes for three models at the outlet 
 
A 2D view of the isolines for the hydraulic head and 
concentration for the two different meshes of the NH 
model and for the DP model can be seen in Figures 15 
and 16.  

 
Fig.15a: Isolines for flow; NH model – original mesh 

 

Fig.15b: Isolines for flow; NH model – rotated mesh 
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Fig.15c: Isolines for flow; DP model – fractures 
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It can be seen that for the double porosity model smooth 
curves occur (Fig. 15c, 16c), since the domain is 
observed as a homogeneous one with adequate 
characteristics.  But for the non-homogeneous models, 
either with the original (Fig. 15a and 16a) or with the 
rotated mesh (Fig. 15b and 16b), the flow and transport 
are emphasised through the fractures, which is a result 
of the much higher permeability in the fractures, 100 
times greater than in the matrix blocks. The contaminant 
in the DP model moves faster in the primary porosity 
(through the fractures), then it does in the NH models, 
and the amount of the pollutant in the matrix blocks 
remains lower. There is little advective transport in the 
matrix blocks for the DP model. The exchange of 
contaminant between a fracture and the matrix is 
characterised by a simplified representation of the 
fracture geometry and by diffusion coefficients.  
 

Fig.16a: Isolines for transport; NH model–original mesh 

 

Fig.16b: Isolines for transport; NH model–rotated mesh 

 

Fig.16c: Isolines for transport; DP model – fractures 

The accuracy of the solution for the transport for the DP 
model is strongly affected by the accuracy of the 
assumed solute exchange term between fractures and 
matrix blocks. From that point of view, one would 
favour the non-homogeneous models, since they require 
fewer parameters. On the other hand, in spite of the 
averaging of the values of the hydraulic heads and 
solute concentrations inside the domain, the much 

simpler geometrical mesh of the double porosity model 
offers in some instances fast and practical way of 
obtaining sufficient information about the flow and 
solute transport in the fractured porous media. The 
results showed that the parameters of the DP model are 
easy to define for uniform networks of fractures where 
the fractures have similar characteristics. One thing that 
DP model cannot provide is detailed insight in the 
variation of field variables inside the observed domain, 
especially inside and in the vicinity of large fractures. 
 
5. CONCLUSIONS 
 
Three different models for solving flow and solute 
transport in fractured porous media are compared for 
this study. These models are: equivalent continuum 
(EC), double porosity (DP) and non-homogenous 
/discrete fracture (NH). It is assumed that the flow and 
the solute transport are described by the Darcy law and 
the advection-dispersion equation, respectively.  

� The advantage of the EC model is that it is the 
simplest one and easiest to use. It can provide good 
agreement for a case where the equivalent 
characteristics of the fractured porous media are easy to 
be estimated, as in case of fracture network parallel to 
the flow. The disadvantage of the EC model is that it 
cannot provide insight in the processes of flow and 
solute transport in the two different media, porous 
matrix and fractures, and would provide less accurate 
results when the estimation of the equivalent 
characteristics of the fractured porous media cannot be 
easily performed.  

� Double porosity models can be used to obtain 
sufficiently accurate results for practical purposes, 
especially for modelling domains with large number of 
fractures with repetitive geometry and similar 
characteristics, not having to engage into preparation of 
complicated input data due to the complex geometry of 
the problem. The DP model offers more information 
than the EC model regarding the averaged properties of 
the flow and transport processes in the porous matrix 
and fractures.  

� The sensitivity analysis of the DP model to 
variations of the transfer term showed that substantially 
different results can be obtained depending on the 
chosen parameters. When the transfer term αw is 
smaller, or matrix blocks larger, the difference between 
the hydraulic heads in the fractures and the matrix 
blocks becomes larger. The steady state is achieved 
after shorter time for smaller αw. 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

transport fractures t=0.1days

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

transport fractures t=1day

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

transport fractures t=5days

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

transport t=3.0 days

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

transport t=5 days

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

transport t=1.0 days

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

transport t=1.0 day

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

transport t=3.0 days

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

transport t=5days

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45



Numeri�ko upore�ivanje modela za protok i transport u poroznoj sredini Todorka Samardzioska i Viktor Popov 

14 VODOPRIVREDA   0350-0519,  39 (2007)   225-227   p. 3-16 

� The NH model provides the largest amount of 
information for the flow and transport processes of the 
three models that were compared and is usually seen as 
the most accurate, as it introduces a smaller number of 
assumptions /approximations than the other two models. 
It has been shown that the orientation of the fracture 
zones through the domain has little influence on the 
results obtained using the NH model, providing that the 
matrix blocks are homogenous and of uniform geometry 
and the fracture network consists of fractures with same 
properties. The disadvantage of the NH model is that the 
exact geometry of the fracture network is not usually 
known, it is difficult to prepare the meshes for 
complicated geometries and distributions of fractures in 
the porous media, and it would impose serious 
computational difficulties in terms of CPU and memory 
requirements when the number of fractures is large. 

� The comparison of results for hydraulic heads 
and solute concentration showed good agreement for the 
three models in most of the cases. The results for water 
and solute fluxes showed that special care has to be 
taken when EC or DP models are used. The main reason 
for this is that for calculation of fluxes the cross 
sectional area must be taken into account. For the DP 
and NH models the total flux consists of a flux through 
the fractures and a flux through the matrix blocks which 
participate in the cross section of interest. While the NH 
model can accurately estimate the fluxes since the total 
cross section of the fractures which participate in the 
cross section is accurately estimated, in the case of an 
isotropic DP model in a general case the fluxes would 
be estimated by using the volumetric factor of the 
fractures, which introduces errors. The problem arises 
since not only the “active” fractures, which contribute 
towards the flux, are taken into account, but also the 
fractures with stagnant water, providing a significant 
overestimate of the flux. Also, the fluxes inside the 
fractures are normally much higher than in the matrix 
blocks, making the error of the fluxes in the fractures 
more significant when calculating the total flux.  
 
One solution to this problem is to use more accurate 
estimate of the total aperture of the fractures, which 
participate in a given cross section, as was done in the 
examples. However, such approach cannot be used in 
the EC model, since there is only one type of 
porosity/permeability in this model.  
 
The BE DRM-MD has been used for the first time to 
solve the double porosity model. The examples showed 
that this BE formulation provides stable results for grid 
Pe=2 and Cr=1 and can be used successfully for solving 

flow and transport processes in fractured porous media. 
The major reason why the BE DRM-MD can be 
attractive is that the fractures can be modelled with 
smaller elements/sub-domains and the matrix blocks can 
be modelled using single domains of various shapes and 
sizes, reducing the need for very fine meshes around 
fractures. Meshes that can easily be adapted to a 
considered problem have in the past been implemented 
using FEM – BEM hybrid methods, usually for 
modelling heterogeneous domains with different 
physical properties. The present formulation has one 
advantage in respect to the FEM – BEM hybrid 
approach, it does not have the problems related to the 
coupling compatibility of the two methods.  
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NUMERI�KO UPORE�IVANJE KONCEPTUALNO RAZLI�ITIH MODELA 

PROTOKA I TRANSPORTA U POROZNOJ SREDINI 
 

Dr Todorka SAMARDŽIOSKA1, Dr Viktor POPOV2 
1. Gra�evinski fakultet, Univerzitet "Sv. Kiril i Metodij" – Skoplje, R Makedonija  

2. Weseks Institut za tehnologiju, Ashurst, Southampton, SO40 7AA, Velika Britanija 
 

Rezime 
 
Zna�aj istraživanja procesa te�enja i transporta efluenata 
u poroznim sredinama podstakao je razvoj �itavog niza 
razli�itih numeri�kih modela koji služe za prognozu tih 
fenomena. U ovom �lanku je izvršeno upore�ivanje tri 
razli�ita modela za izu�avanje te�enja podzemnih voda i 
transport zaga�uju�ih efluenata: model ekvivalentnog 
kontinuuma (EC), model dvojne poroznosti (DP) i 
nehomogeni model (NM) sa diskretnim pukotinama. 
Mada je jasno da se ta tri modela baziraju na sasvim 
razli�itim  
 
predpostavkama u pogledu njihove validnosti, u 
dostupnoj literaturi do sada nije vršeno uporedno 
istraživanje u kakvim okolnostima dva od njih ili sva tri 

– daju sli�ne rezultate. Autori su koristili metodu 
grani�nih elemenata sa dvojnim reciprocitetom, šemu sa 
multidomenom, i podrobno objasnili njenu 
implementaciju pri rešavanju ovog složenog zadatka. 
Takva numeri�ka šema je prvi put koriš�ena u 
modelima sa dvojnom poroznoš�u. Pokazala je 
zadovoljavaju�u ta�nost i veliku fleksibilnost u 
pripremama modela, posebno u slu�aju nehomogenih 
mreža sa diskretnim pukotinama.  
 
Klju�ne re�i: porozne sredine sa pukotinama; model 
ekvivalentnog kontinuuma; dvojno porozni model; 
model sa diskretnim pukotinama; upore�ivanje modela; 
grani�ni elementi 
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